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Abstract

In order to easily enforce solid-wall boundary conditions in the presence of complex
coastlines, we propose a new mass and energy conserving Brinkman penalization for
the rotating shallow water equations. This penalization does not lead to higher wave
speeds in the solid region. The error estimates for the penalization are derived ana-5

lytically and verified numerically for linearized one dimensional equations. The penal-
ization is implemented in a conservative dynamically adaptive wavelet method for the
rotating shallow water equations on the sphere with bathymetry and coastline data from
NOAA’s ETOPO1 database. This code could form the dynamical core for a future global
ocean model. The potential of the dynamically adaptive ocean model is illustrated by10

using it to simulate the 2004 Indonesian tsunami and wind-driven gyres.

1 Introduction

The goal of this paper is to propose a new Brinkman volume penalization of the rotat-
ing shallow water equations and implement them in our dynamically adaptive wavelet
model on the sphere (Dubos and Kevlahan, 2013; Aechtner et al., 2014) to simulate15

oceanic flows with realistic coastlines and bathymetry over scales ranging from sub-
kilometre to global.

Brinkman penalization methods for the numerical solution of the Navier–Stokes
equations with solid boundaries were originally introduced by Angot et al. (1999) follow-
ing the pioneering work of Arquis and Caltagirone (1984). Like all penalization meth-20

ods, their goal was to avoid having to adapt the discretization scheme to account for
complex solid boundaries by instead modifying the dynamical equations such that as
a control parameter tends to zero the solution of the modified equations with simple
boundary conditions (e.g. periodic) tends to the solution of the original equations with
the desired boundary conditions. The physical analogy is that the regular fluid is re-25

placed by a porous medium where the porosity and permeability tend to zero in the
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solid portion of the computational domain and the porosity is one (i.e. a regular fluid)
in the fluid part of the domain. Angot et al. (1999) proved the method converges and
gave (non-sharp) estimates of the error in terms of the control parameter. Because it
is a volume penalization, Brinkman penalization methods are easy to implement be-
cause the geometry of the boundary need not be known: it is sufficient to know the5

indicator function (or mask) defining points as being either in the solid or fluid parts of
the computational domain.

Since its introduction Brinkman penalization has been applied to a wide range of
fluid flow problems and numerical schemes, including spectral methods (Kevlahan and
Ghidaglia, 2001), moving boundaries (Kevlahan and Wadsley, 2005; Kolomenskiy and10

Schneider, 2009), the wave equation (Paccou et al., 2005), the compressible Euler
equations (Liu and Vasilyev, 2007) and the shallow water equations (Perret et al., 2003;
Reckinger et al., 2012).

Penalization methods are particularly well-suited to dynamically adaptive methods
since these methods automatically refine the computational grid in the boundary layers15

and can use very coarse grids in the solid part of the computational domain where
the solution is irrelevant (Kevlahan et al., 2000; Schneider and Farge, 2002; Vasilyev
and Kevlahan, 2002; Kevlahan and Vasilyev, 2005). In addition, because penalization
methods enforce the boundary conditions to only first-order accuracy adaptive methods
can provide the required level of accuracy by local grid adaptation (i.e. h refinement).20

In this paper we propose a new volume penalization for the shallow water equations
and then implement it in the adaptive wavelet method for the rotating shallow water
equations on the sphere that we have recently developed (Dubos and Kevlahan, 2013;
Aechtner et al., 2014). Our method is a modification of the one proposed by Reckinger
et al. (2012) to ensure that mass and energy are conserved and that the wave speed25

is the same in both the solid and fluid parts of the domain. We also modify the velocity
penalization (i.e. permeability) term to ensure better control of the overall error using
the porosity parameter alone.
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Previous volume penalization methods for the shallow water equations are reviewed
in Sect. 2. The new penalization is derived from the porous shallow water equations in
and Sect. 3. The new penalization is verified for the linearized one-dimensional equa-
tions in Sect. 4. Finally, we illustrate the potential of the new method by applying it to
two global ocean flows: tsunami propagation and wind driven gyres. These simulations5

have realistic bathymetry and coastlines from the 1 arc min NOAA ETOPO1 global re-
lief data base (Amante and Eakins, 2009). The two examples show how the Brinkman
penalization of the shallow water equations works with a dynamically adaptive wavelet
method for both fast (tsunami) and slow (global ocean circulation) dynamics and in the
inertia–gravity (tsunami) and quasi-geostrophic (global ocean circulation) regimes. We10

intend to extend the methods presented here to build a full dynamically adaptive global
ocean circulation model.

2 Previous penalization methods for the shallow water equations

In vector-invariant form, Reckinger et al. (2012) proposed the following set of penalized
shallow water equations,15

∂h
∂t

+
1

φ(x)
divhu = 0, (1)

∂u
∂t

+
curl(u)

h
×hu+grad

(
gh+

1
2
|u|2
)
= −σ(x)u, (2)

where h is the height of the fluid column, u is the vertically averaged horizontal velocity
and g is gravity. In this section, as well as in Sects. 3 and 4, the Coriolis force is
omitted for simplicity. It will be reintroduced in the numerical experiments of Sect. 5.20

The corresponding momentum equation is

∂m
∂t

+div(m⊗u)+φgrad
(

1
2
gh2
)
= −σ(x)u, (3)
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where momentumm = hu coincides with the mass flux. φ(x) and σ(x) are respectively
the variable porosity and linear friction terms characterizing the porous medium. In or-
der to model a fluid with solid boundaries these terms have the following discontinuous
forms

(φ(x),σ(x)) =

{
(α,1/ε) in the penalized region,

(1,0) in the fluid,
(4)5

where the parameters α and ε control the accuracy of the boundary condition approx-
imation. (For stable numerical implementation of the penalization the discontinuities in
φ and σ are smoothed over a few grid points.) Physically, a large jump in porosity leads
to a large jump in impedance that causes inertia–gravity waves to be almost perfectly
reflected at the solid boundary, while a strong linear friction term rapidly damps velocity10

fluctuations approximating a no-slip velocity boundary condition.
Equations (1)–(3) are derived from Liu and Vasilyev (2007)’s similar penalized equa-

tions for the compressible Euler equations. Both penalizations have the property that
mass and momentum do not move at the same speed and so it is impossible to con-
serve mass or to define an energy equation.15

The lack of mass conservation is easy to see from the mass equation (Eq. 1), which
can be rewritten as
∂φ(x)h
∂t

+divm = 0, (5)

where m = hu is the height (i.e. mass) flux. In order to conserve mass, the mass flux
should actually be m =φ(x)u to take into account the changing volume fraction of20

the fluid in the porous medium. The penalized momentum equation (Eq. 3) also uses
a non-porous mass flux (i.e. hu instead of φhu). Therefore, it is impossible to derive
an energy budget from Eqs. (1) and (3).

Reckinger et al. (2012)’s penalization also has the property that inertia–gravity wave
speeds are 1/

√
α times faster in the porous medium. This introduces a stiffness in time25

associated with the small porosity α that enforces an artificially small time step.
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The earlier shallow water equation penalization used by Perret et al. (2003) is even
simpler in that only the velocity field is penalized using the friction term −σ(x)u. There-
fore, only the no-slip velocity boundary condition is approximated and not the perfect
reflection of inertia–gravity waves at the boundary. This penalization can therefore be
approximately valid in the quasi-geostrophic regime where wave motion is insignificant5

compared to vortical motion.
In the following section we derive the shallow water equations for a porous medium

using Euler–Poincaré theory and then use these physical equations to propose a new
Brinkman penalization for the shallow water equations in complex geometries. The final
equations differ only slightly from those proposed by Reckinger et al. (2012), but they10

conserve both mass and energy and the wave speed is the same in both the fluid and
penalized parts of the domain. Although our penalization is better justified on physical
grounds, it is not yet clear whether it has any computational advantages apart from
eliminating the stiffness constraint associated with the small porosity α.

3 New volume penalization for the shallow water equations15

3.1 Derivation of porous shallow water equations

Euler–Poincaré theory (Holm et al., 2002) states that Hamilton’s least action principle
applied to the action

L =
∫
L(h,u,x)dxdydt

generates momentum equations for a particular choice of Lagrangian density20

L(h, (u), (x)) = T − V . The Lagrangian density is the difference in kinetic and potential
energy density and is assumed to depend on a scalar h, velocity vector field u(x) and
position vector x ∈R2. If the conservation equation for the scalar h is

∂h
∂t

+div(hu) = 0,
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then locally conservative vector-invariant equation for momentum m is

∂m
∂t

+div(m⊗u)+grad(p) =
∂L
∂x

, (6)

and the vector-invariant equations of motion are

∂v
∂t

+
∇× v
h
×hu+∇B = 0, (7)

where5

m =
∂L
∂u

= hv ,B = u · v − ∂L
∂h

,p = L−h∂L
∂h

,v = u.

The total energy

E =
∫ ∫

(m ·u−L)dxdy

is conserved.
We now use Euler–Poincaré theory to derive standard and modified shallow water10

equations. The fluid has free surface perturbations η(x) from the mean free surface
η = 0 and the depth of the fluid is given by b(x) > 0 so the total depth is h(x) = η(x)+
b(x) as shown in Fig. 1. (In ocean modelling b is called the bathymetry, and b = 0
corresponds to coastlines.) The shallow water approximation assumes that η is small
compared to depth b and that the wavelength of surface waves is much longer than the15

depth b. Note that h is proportional to the total mass density of the fluid column.
The standard shallow water equations are obtained using the Lagrangian density for

the shallow water system

L(h,u) =
1
2
h(|u|2 −g(η−b)),
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from which one derives

m = hu,

B = gη+
1
2
|u|2, p =

1
2
gh2,

E =
1
2

∫ ∫
h(u2 +g(η−b))dxdy .

Thus, the shallow water equations of motion are the equations of motion5

∂u
∂t

+
curl(u)

h
×hu+grad

(
gη+

1
2
|u|2
)
= 0. (8)

We now assume a porous medium with volume fluid fraction given by the variable
porosity φ(x). We define a new variable h̃ =φh satisfying the conservation law

∂h̃
∂t

+div(h̃u) = 0, (9)

and the action10

L =
∫ ∫ ∫

1
2
h(|u|2 −g(h−2b))φdxdydt. (10)

The Lagrangian density for the new variable h̃ is then

L(h̃,u,x) =
h̃
2

(
|u|2 −gh̃−2b̃

φ

)
, (11)

where b̃ =φb, from which

m = h̃u, v = u, B = gη+
1
2
u2,15

p =
1
2
φgh2,

∂L
∂x

=
1
2
gh(h−2b)grad(φ).
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The momentum equation for the porous shallow water system is

∂m
∂t

+div(m⊗u)+φgrad
(

1
2
gh2
)
= 0.

However, surprisingly, the vector-invariant form of the equations of motion for the shal-
low water system are identical to the usual shallow water equations (Eq. 8); only the
mass budget has changed to Eq. (9). States of rest correspond to constant h and5

inertia-gravity waves travel at speed
√
gh if the porosity φ is constant, independent of

the actual value of φ.
The non-dissipative equations of motion derived above do not fully model flow in

porous media since they do not include the friction force per unit volume that resists
flow through the medium. Including the friction force, the full vector-invariant equations10

of motion for the porous shallow water system are

∂u
∂t

+
curl(u)

h
×hu+grad

(
gη+

1
2
|u|2
)
= −

µφ(x)

K (u,h,x)
u, (12)

where µ is the fluid viscosity and K (u,h) is the effective permeability of the medium
due to various friction terms. However, for the purposes of this paper we will assume
the simple linear friction term of the form15

−
φ(x)

K
u, (13)

with constant permeability K which, like ε, has the dimensions of a time.
If the porosity is not small, it is better to use an empirical nonlinear friction law that

includes both bottom and wall shear stresses (Guinot and Soares-Frazao, 2006). For
example, the Strickler law approximates the friction term as20

−
gh̃|u|
k2h4/3

u, (14)
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where k is the so-called Strickler coefficient that depends empirically on the bottom

roughness ks, e.g. Ramette’s formula gives k = 8.2
√
g/k1/6

s (Hervouet, 2007). Strick-
ler’s law is used by Guinot and Soares-Frazao (2006) in their porous shallow water
model for large-scale flooding of urban areas.

3.2 Volume penalization of the shallow water equations5

Our goal in this paper is to derive a volume penalization for solid boundaries in the
shallow water model (e.g. coastlines or islands in an ocean model). As in all penaliza-
tion methods, the idea is to implement boundary conditions implicitly by modifying the
equations in a suitable way. In the limit as certain control parameters tend to zero the
solution of the modified equations tends to the solution of the original equations with the10

desired boundary conditions. Such penalization techniques are particularly well-suited
to adaptive numerical methods since, although the solid region is technically part of the
computational domain, it can be resolved very coarsely except near the boundary.

We propose modelling the solid parts (e.g. continents and islands) of the computa-
tional domain as a porous medium with vanishingly small porosity φ and permeability15

K . The fluid part of the computational domain remains a regular fluid. The jump in
porosity causes inertia-gravity waves to be reflected physically at the coastline and the
small permeability approximates a no-slip boundary condition for velocity, i.e. u = 0.

The vector-invariant penalized shallow equations based on Eq. (12) are

∂h̃
∂t

+divh̃u = 0,

∂u
∂t

+
curl(u)

h̃
× h̃u+grad

(
gη̃
φ(x)

+
1
2
|u|2
)
= −σ(x)u,

(15)20

where η̃ =φ(x)η. The porosity φ(x) and porous friction coefficient σ(x) are discontin-
uous such that the fluid portion of the domain is unaffected and the solid portion is
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penalized as a very impermeable medium,

(φ(x),σ(x)) =

{
(α,α/K ) in the penalized region,

(1,0) in the fluid,
(16)

with K � α� 1. The solid regions are defined by the indicator function χ (x),

χ (x) =

{
1 in the solid,

0 in the fluid.
(17)

When implemented numerically the indicator function χ (x) is smoothed over a few grid5

points, as discussed in Reckinger et al. (2012). The porosityφ(x) and friction coefficient
σ(x) are then defined based on χ (x) and the control parameters α� 1 and K � α� 1
as

φ(x) = 1+ χ (x)(α−1), (18)

σ(x) =
α
K
χ (x). (19)10

Note that the prognostic variables for the penalized shallow water equations (Eq. 15)
are (h̃,u) and that h̃ = h in the non-penalized (i.e. non-porous) region.

Equation (19) shows that the velocity penalization friction term σ(x) depends explic-
itly on both the porosity α and the permeability K . In contrast, in Reckinger et al. (2012)
the velocity friction parameter ε is formally independent of porosity. Since ε = K/α for15

a porous medium this implies that they effectively modify the permeability as the poros-
ity changes in order to keep ε constant.

The flux form of the equations is

∂h̃
∂t

+div(m) = 0,

∂m
∂t

+div
(
m⊗m
h̃

)
+φgrad

(
gh̃2

2φ2

)
= −σm,20
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where the mass fluxm =φhu. This shows clearly that both mass and momentum move
at the same speed u.

Although this penalization scheme is similar to that proposed by Reckinger et al.
(2012), it does have some important physical and numerical differences that could
prove advantageous. In addition, we fully characterize the error and convergence prop-5

erties of penalization by deriving analytical estimates for the exact solution of the lin-
earized one-dimensional wave propagation problem.

3.3 Properties of the penalization

We now summarize the main numerical properties of the volume penalization of the
rotating shallow water equations introduced in the previous section.10

The impedance mis-match at the solid boundary means that inertia-gravity waves
are reflected with reflection coefficient

R =
α−1 −1

α−1 +1
= 1−2α+O(α2),

whereas the exact behaviour at the boundary is perfect reflection, R = 1. Therefore,
some height amplitude will be lost since part of the wave is transmitted and the size of15

the error is O(α).
There are two main differences compared with the method proposed in Reckinger

et al. (2012). First, mass and energy both move at the same speed u and so energy is
conserved. In particular, total energy decreases as

d
dt

1
2

∫ ∫
h(gη+ |u|2)φ(x)dxdy = −

∫ ∫
σ(x)h|u|2φ(x)dxdy ,20

which implies that the penalization is stable. Secondly, ignoring friction, the linear wave
speed is the same in both the fluid and porous regions,

c = u±

√
gh̃
φ(x)

= u±
√
gH ,
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where h̃ = hφ(x) = (H +O(η))φ(x), with η� 1, independent of α. This means that, un-
like Reckinger et al. (2012)’s method, the height penalization does not affect the time
step or stability properties of the numerical method.

The velocity penalization term is stiff in time, and limits the time step to ∆t = O(ε)
for explicit methods. Note that the height penalization parameter α does not place any5

additional constraints on the spatial resolution ∆x or the time step ∆t unless we choose
to set ε = K/α.

Because height and velocity are governed by diffusion (and not wave) equations in
the penalized solid region a wave will not be emitted from the boundary if there is no
incoming wave. Therefore, the penalization is stable according to GKS stability theory10

for numerical stability of hyperbolic problems (Gustafsson et al., 1972).
The error and convergence properties of this method are derived analytically and

verified numerically for a simple linear one-dimensional example in following section.

4 Analysis of linearized 1-D equations and guidelines for use

4.1 Exact solution and error analysis15

We consider the one-dimensional penalized shallow water equations linearized about
the state of rest with depth H and speed u = 0,

∂h̃
∂t

= −H ∂
∂x

(φ(x)u),

∂u
∂t

= −g ∂
∂x

(
h̃

φ(x)

)
−σ(x)u,

(20)

where the penalization functions φ(x) and σ(x) are as given in Eq. (4). The geometry
of the domain is defined by the indicator function χ (x) = H(x), where H(x) is the Heavi-20

side function. This means that x < 0 is fluid and x ≥ 0 is solid. (Note that in a numerical
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implementation the indicator function is smoothed over a few grid points to avoid nu-
merical oscillations.) The initial conditions are u(x,0) = 0 and

h(x,0) =


Hw , x < −L−1,

−HwL (x+1), −L−1 ≤ x ≤ −1,

0, x > −1,

(21)

i.e. a linear ramp wave front with (non-dimensional) width L and amplitude Hw .
Following Kevlahan and Ghidaglia (2001) we solve the problem by taking separate5

Laplace transforms in time for the regions x < 0 and x ≥ 0 and solving the resulting
ordinary differential equations in x. The resulting four constants are determined by the
requirement of finite solutions as x→±∞ and from the jump conditions at x = 0,

h̃(x−) = h̃(x+)/α,u(x−) = u(x+)α. (22)

These jump conditions are found by integrating Eq. (20) across the fluid–solid boundary10

x = 0.
The exact Laplace transforms of penalized height and velocity in the fluid solid re-

gions are

h̃fluid(x,s) = h̃1(x,s)+
cHw
2Ls2

esx/c(e−s/c −e−s(1+L)/c)
(1+α2)εs+1−2α

√
εs(εs+1)

(1−α2)εs+1
,

ufluid(x,s) = u1(x,s)−
c2Hw

2HLs2
esx/c(e−s/c −e−s(1+L)/c)

(1+α2)εs+1−2α
√
εs(εs+1)

(1−α2)εs+1
,15

h̃solid(x,s) = −
αcHw
Ls2

εs+1−α
√
εs(εs+1)

(1−α2)εs+1
e
− x√

εc

√
s
√
εs+1

(e−s/c −e−s/c(1+L)),

usolid(x,s) =
gHw
Ls3/2

√
εs+1−α

√
εs

(1−α2)εs+1
e
− x√

εc

√
s
√
εs+1

(e−s/c −e−s(1+L)c), (23)
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where the wave speed c =
√
gH , and h̃1(x,s) and u1(x,s) do not depend on the penal-

ization. Now, taking the leading order series expansions in α� 1 we have the following
approximate expressions for the Laplace transforms of the penalized solutions,

h̃fluid(x,s) = h̃exact(x,s)−
αε1/2cHw

L
esx/c(e−s/c −e−s(1+L)/c)

s3/2
√
εs+1

+O(α2),

ufluid(x,s) = uexact(x,s)+
αε1/2c2Hw

HL
esx/c(e−s/c −e−s(1+L)/c)

s3/2
√
εs+1

+O(α2),

h̃solid(x,s) =
αcHw
Ls2

e
− x√

εc

√
s
√
εs+1

(e−s/c −e−s(1+L)/c)+O(α2),

usolid(x,s) =
gHw
Ls3/2

e
− x√

εc

√
s
√
εs+1

√
εs+1

(e−s/c −e−s(1+L)/c)+O(α),

(24)

where we recall that the exact solution in the solid region is zero.5

Taking the inverse Laplace transform of Eq. (24) gives the following results for the
penalizations errors in the fluid part of the domain,

h̃fluid(x,t)− h̃exact(x,t) =
αHw
L

[f1(x+ct− (1+L))− f1(x+ct−1)],

ufluid(x,t)−uexact(x,t) = − c
H

(h̃fluid(x,t)− h̃exact(x,t)),
(25)

where

f1(x) = H(x)xM
(

1
2

,2,− x
cε

)
,10

andM(1/2,2,−z) is a hypergeometric function with leading order asymptotic expansion
for large argument z

M(1/2,2,−z) ∼ 2
√
π
z−1/2.
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Note that the error is exactly zero until the wave reflects from the boundary. After re-
flection the error is zero at the leading edge of the wave x = 1−ct and maximal at the
trailing edge x = 1+L−ct. The maximum relative penalization errors are therefore

||h̃fluid − h̃exact||∞
Hw

= αM
(

1
2

,2,− L
cε

)
∼ 2

√
c
L
αε1/2,

||ufluid −uexact||∞
c

= α
Hw
H
M
(

1
2

,2,− L
cε

)
∼ 2

Hw
H

√
c
L
αε1/2,

(26)

where we have assumed that ε� L/c and recall that ε = K/α.5

The asymptotic estimates Eq. (26) show that the penalization converges as ε→ 0

and α→ 0 and that the relative errors the penalized equations are O(αε1/2
√
c/L) for

height and O(αε1/2
√
c/LHw/H) for velocity. As expected, the error is exactly zero until

the wave reaches the solid boundary at t = 1.
Now, taking the inverse Laplace transform in the solid region we find that10

h̃solid(x,t) =
αcHw
L

 t−1/c∫
x/c

e−τ/2εI0

(
1

2ε

√
τ2 −

(x
c

)2
)
e−

t−1/c−τ
ε M

(
3
2

,1,
t−1/c− τ

ε

)
dτ

−
t−(1+L)/c∫
x/c

e−τ/2εI0

(
1

2ε

√
τ2 −

(x
c

)2
)
e−

t−(1+L)/c−τ
ε M

(
3
2

,1,
t− (1+L)/c− τ

ε

)
dτ


usolid(x,t) =

gHw
L

t−1/c∫
t−(1+L)/c

e−τ/2εI0

(
1

2ε

√
τ2 −

(x
c

)2
)

dτ. (27)

If we now assume that ε� t− (L+1)/c to approximate I0(z) ∼ ez/
√

2πz for z� 1,

x� ct−(L+1) to approximate
√
τ2 − (x/c)2 = τ(1−1/2(x/cτ)2)+O(x/cτ)4) and ε�15
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x/c to approximate M(3/2,1,−z) ∼ 2z1/2/
√
π, the above Laplace transform integrals

become

h̃solid(x,t) =
2αcHw
πL

 t−1/c∫
x/c

(
t−1/c
τ

−1

)1/2

exp

(
− x2

4c2ετ

)
dτ

−
t−(1+L)/c∫
x/c

(
t− (1+L)/c

τ
−1

)1/2

exp

(
− x2

4c2ετ

)
dτ

 ,

ũsolid(x,t) =
gHw
L

√
ε
π

t−1/c∫
t−(1+L)/c

τ−1/2 exp

(
− x2

4c2ετ

)
dτ.

(28)

Again, assuming ε� x/c the integrand in the first equation decays exponentially as
τ→ x/c and we can approximate the lower integration limit x/c by zero. Evaluating5

the integrals in Eq. (28) gives the final results,

h̃solid(x,t)

Hw
∼ αc
L

[f2(x,t−1/c)− f2(x,t− (L+1)/c)],

usolid(x,t)
c

∼
gHw
Lc

[f3(x,t−1/c)− f3(x,t− (L+1)/c)],

(29)

where

f2(x,t) = H(t)t

[(
1+

x2

2c2εt

)
erfc
(

x

c
√
εt

)
− x

2c
√
πεt

exp

(
− x2

4c2εt

)]
,

f3(x,t) = H(t)

[
x
c

erf
(

x

2c
√
εt

)
+2

√
tε
π

exp

(
− x2

4c2εt

)]
.

(30)
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Assuming an interaction time t ≈ L/c, the results (Eqs. 29 and 30) show that the pe-
nalized solution penetrates a distance O(

√
cLε) into the solid region. This numerical

boundary layer must be resolved, so we require a local grid size near the boundary
∆x ≤

√
cLε/2. If the wavefront is well-resolved, i.e. L is much larger than the grid size

∆x, then the penalization is first-order accurate in space with a relative height error5

O(α∆x/L). However, if the wavefront is only marginally resolved, i.e. L ≈∆x, then the
relative error is O(α), independent of the grid resolution. In this case a sufficiently small
error can be achieved for any grid by choosing α appropriately.

4.2 Numerical verification on linearized 1-D wave propagation

The error estimate O(αε1/2) = O(
√
αK ) for height and velocity derived in the previous10

section is verified here for one-dimensional linear wave propagation with reflection. The
computational domain is x ∈ [0,Lx] with periodic numerical boundary conditions. The
penalized (i.e. solid) region is x ≤ x1 and x ≥ x2 defined by indicator functions,

χ (x) =
1
2

(
tanh

(
x−x2

∆

)
− tanh

(
x−x1

∆

))
,

φ(x) = 1+ χ (x))(α−1),15

σ(x) =
1
ε

(H(−(x−x1))+H(x−x2)).

A smoothed porosity is used since φ(x) must be differentiated. However, the perme-
ability σ(x) is not smoothed since otherwise the penalization error begins to grow for
sufficiently small ε (depending inversely on α). (If ε = K/α, a smoothed σ(x) may be
used.) When ε = K/α we choose K = (4∆x)2. A good choice for the smoothing param-20

eter is the smallest value that ensures stable solutions and linear error convergence
with α, i.e. ∆ = ∆x which smooths the indicator function over about four grid points as
shown in Fig. 2. We use these choices for the K and ∆ in the remainder of this section.
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The initial condition is a Gaussian wave for height and zero velocity,

h0(x) = exp

−(x−Lx/2

L

)2
 ,

u0(x) = 0.

(31)

The initial conditions and porosity are shown in Fig. 2. The computational domain is
[0,0.6] (i.e. Lx = 0.6), with the fluid part of the domain [0.05,0.55] (i.e. x1 = 0.05 and
x2 = 0.55) of length 0.5 and the left and right solid boundaries are penalized regions of5

width 0.05 each.
The exact solution with initial conditions (Eq. 31) and solid boundary conditions u = 0

and ∂h/∂x = 0 is

h(x,t) =
1
2

(hp0 (x− t)+hp0 (x+ t))+
1
2

(up0 (x− t)−up0 (x+ t)),

u(x,t) =
1
2

(up0 (x− t)+up0 (x+ t))+
1
2

(hp0 (x− t)−hp0 (x+ t)),10

where hp0 (x) and up0 (x) are odd periodic extension of the initial conditions outside the
fluid interval [x1,x2].

The linearized one-dimensional equations (Eq. 20) are solved using a standard
second-order finite volume/finite difference scheme with third-order Runge–Kutta in-
tegration in time on a uniform grid with N = 2400 grid points. A typical penalized solu-15

tion is shown at time t = 0.22 in Fig. 3, when the wave is strongly interacting with the
walls. This figure confirms the expected behaviour of the penalized solution near the
walls: the velocity boundary condition has an error and internal boundary layer of size

O(ε1/2), while the height perturbation does not penetrate into the solid.
In order to measure the effect of the penalization on the error of the global solution20

after reflection we measure the L∞ error at t = 0.5 when the exact solution should
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precisely reproduce the initial conditions. The prediction that the error should scale

proportional to the porosity α if α and ε are independent and like α1/2 if ε = K/α (as in
a porous medium) is verified in Fig. 4. Note that the error at small α < 10−4 is effectively
limited by the error of the underlying finite-volume/finite-difference numerical scheme,
which is about 6×10−5 for the exact boundary conditions at this resolution N = 2400.5

Figure 5 (left) confirms that the error scales like K 1/2 when ε = K/α. Finally, Fig. 5
(right) confirms that the error for this penalization scheme, with permeability K = ∆x2,
is first-order accurate. Since we implement this penalization in a dynamically adaptive
simulation, sufficient accuracy is achieved by refining the grid at the boundary (i.e. by
h refinement) and choosing α appropriately as explained in Sect. 4.3.10

As mentioned in Sect. 3.2, Reckinger et al. (2012) assume that α and ε are formally
independent. However, in practice they advise that ε should be smaller than α, and
choose ε/α = 10−2 for their simulations. This restriction is not necessary in our case

since the error is O(αε1/2). This means that α can be chosen smaller than ε, as shown
in Fig. 4. In fact, to ensure scaling of the error like O(ε1/2) when α is fixed it is neces-15

sary to choose εα = K (constant) when the indicator function defining the solid region
is smoothed. Although Reckinger et al. (2012) interpret Fig. 8 for α = ε as showing

a weaker error convergence O(α1/2), it actually appears to show the expected scaling
O(α), but over a small range of α of about one decade.

4.3 Guidelines for choosing penalization parameters20

The parameters ε, α and ∆ determining the penalization are chosen as follows.
The permeability parameter ε is set first, based on the spatial resolution of the simu-

lation ∆x near the coastlines. As explained in Sect. 4.1, the smallest permissible value
for ε is 4∆x2/cL. However, the velocity penalization term is stiff, restricting the time
step to ∆t ≤ C1ε (with C1 an order one constant) for an explicit method. It is therefore25

often preferable to choose a larger ε so the penalization does not enforce an arti-
ficially small time step. For example, set ε = ∆t = C2∆x/c according to the Courant–
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Friedrichs–Lewy (CFL) stability condition for hyperbolic equations. Note that this is also
the smallest permissible ε when the smallest wavefronts are only marginally resolved
so L ∼∆x, where ε ≥ 4∆x/c. Using this choice of ε, and in the least favourable case
where the smallest wavefronts are only marginally resolved, the relative error in height
is O(α) and the relative error in velocity is O(αHw/H) independent of ε and ∆x.5

Now, since ε has been determined by the resolution of the simulation, the desired
accuracy is controlled by setting the porosity α. Recall that the choice of α does not
affect the numerical stability of the simulation. Typically, α = O(10−3) is appropriate for
a second-order accurate simulation. In a dynamically adaptive method like the one
used here, α should be set about ten times smaller than the tolerance ε. Recall that10

the parameter ε also enforces the no-slip (i.e. tangential) velocity condition to a relative

accuracy O(ε1/2
√
u/l ), where u and l are the velocity and length scales of the flow

tangential to the boundary (Kevlahan and Ghidaglia, 2001).
The smoothing scale ∆ of the indicator function χ (x) is set to smooth over a few grid

points (e.g. two to four). The smoothing scaling should be much smaller than the scale15

L of the smallest waves and also smaller than
√
Lcε.

These choices ensure the penalization is well-resolved, produces sufficiently accu-
rate results and is consistent. When implemented in the adaptive wavelet method we
must also ensure α is not too small, i.e. α > 7.5×10−4, in order to avoid negative heights
near the boundary due to the linear interpolation used in the wavelet transform.20

In the following section we verify the results of the penalization analysis numerically
using a dynamically adaptive second-order finite difference – finite volume scheme (Du-
bos and Kevlahan, 2013; Aechtner et al., 2014) on the sphere based on the TRiSK
scheme (Ringler et al., 2010).
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5 Applications to ocean simulation

The Coriolis force, which is omitted in the previous sections, is now included by adding
the Coriolis parameter f to the relative vorticity curl(u) in the curl-form equations of
motion (Eq. 15).

5.1 Implementation of penalization in adaptive wavelet solver on the sphere5

Penalization techniques are especially well-suited to dynamically adaptive numerical
simulations, where the local resolution changes in time to resolve the solution. In par-
ticular, in ocean flows we expect the resolution to be finer near coastlines in order to
resolve boundary currents (e.g. wind-driven gyres in the quasi-geotrosphic regime) or
wave interaction with the coast (e.g. tsunami propagation in the inertia gravity wave10

regime). Ocean flow is well-suited to variable resolution adaptive numerical methods
since about 25 % of the surface of the Earth is land (which thus requires no resolution)
and the ocean flows are highly inhomogeneous and variable in both time and space.

An explicit definition of the coastline is difficult to implement in adaptive simulations
because the precise location of the coastline changes as the grid refines and coarsens.15

On the other hand, it is computationally inefficient to resolve the coastline to the finest
resolution at all locations and at all times. Defining the coastline as a mask means the
coastline is defined implicitly and automatically becomes more detailed as the grid re-
fines to follow the local flow dynamics. In addition, smoothing the profile of the coastline
over a few grid points arguably produces a better physical model than a sharp bound-20

ary (since coastlines are in fact porous). The multiscale and staggered structure of the
adaptive wavelet scheme also causes problems for an explicit definition of the coast
line since the hexagonal cells containing the height are shifted between adjacent scale
of resolution (see Dubos and Kevlahan, 2013; Aechtner et al., 2014).

Finally, as mentioned in the previous section, grid refinement near the coastlines25

increases the local accuracy of the penalization through h refinement compensating
for its relatively low order of accuracy.
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The penalization defined by the variable porosity (Eq. 18) and friction (Eq. 19) is eas-
ily integrated into the dynamically adaptive second-order finite difference – finite volume
scheme on the sphere presented in Dubos and Kevlahan (2013) and Aechtner et al.
(2014) since it requires only straightforward modifications of the shallow water equa-
tions. The bathymetry and topographic data are from the 1 arc min NOAA ETOPO15

global relief data base (Amante and Eakins, 2009).
The raw bathymetry data from from the ETOPO1 database naturally tends to zero

depth near the coast. Because we have not implemented wetting and drying in our
shallow water model, we impose a minimum depth Hmin near the coastlines,

b =


br br ≤ −Hmin,

−Hmin −Hmin < br < 0,

0 otherwise.

(32)10

In practice, Hmin > 2m is usually sufficient.
The mask χ (x) defining the solid and fluid regions is found by setting locations with

negative bathymetry to zero and regions with positive (or zero) bathymetry to one,

χ =

{
0, br < 0,

1 otherwise.
(33)

This generates a mask on the regular 1 arc min latitude–longitude ETOPO 1 grid, which15

does not correspond to the non-uniform dual hexagonal–triangular grids used in the
adaptive scheme. The value of the mask at required points on the hexagonal–triangular
grid are found by using a simple exponential radial basis function (RBF), with weights
f (x;a) = exp(−(ar)2) where r is the arc distance between the ETOPO 1 mask and the
location of the required grid point. The parameter a is chosen to smooth over an area20

equivalent to two to four hexagonal cells. This RBF procedure both interpolates from
the latitude–longitude grid to the adaptive grid nodes and smooths the resulting mask.
The RBF procedure can also be used to smooth the bathymetry data in the fluid part of
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the domain, although this is not usually necessary. Currently, all points are smoothed
although the method could be optimized by smoothing only those points in a small
neighbourhood of a coastline.

During grid refinement the bathymetry is computed at the new grid-points using the
RBF interpolation described above. This procedure means that total mass of water is5

no longer conserved exactly. Instead, the total mass relative to the sea-level is con-
served by the numerical scheme. This means that the mass defect introduced by the
discrete model, which may accumulate over time, is still controlled to the order of round-
off errors. The mass defect caused by changes in the bathymetry cannot accumulate
and is bounded at all times.10

In the following sections the adaptive wavelet method for the shallow water equations
with penalization is used to solve two characteristic ocean flows: tsunami propagation
(i.e. the inertia gravity wave regime with fast dynamics) and wind-driven gyre flow (i.e.
the quasi-geostrophic regime with slow dynamics). The goal of these simulations is
to demonstrate the potential of this method for efficient simulation of global flows with15

localized small scale features. It should be stressed that different degrees of physical
accuracy are to be expected in each case due to the approximations inherent in the
shallow water model. On the one hand, the shallow water equations model tsunami
propagation quite accurately, so that a realistic tsunami simulation is expected. On the
other hand, the shallow water equations are quite insufficient to model the general20

circulation of the oceans. Only the mean gyre circulation, driven by the wind stress
and Sverdrup balance, which is acceptably represented in a one-layer model, can be
captured realistically. Smaller-scale features, such as vortices and jet meandering, are
predominantly generated in the real ocean by baroclinic mechanisms which cannot
be captured by a single-layer model. Their main characteristics are not expected to be25

realistic. Rather, the capacity of the adaptive model to produce, say, boundary currents,
should be analyzed as a qualitative demonstration of the potential of the method, rather
than evaluated quantitatively for its accuracy.
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5.2 Tsunami propagation

Our first example illustrates how the penalization, combined with the dynamically adap-
tive wavelet method (Aechtner et al., 2014), performs for global calculation of tsunami
wave propagation. The flow is clearly in the inertia gravity wave regime and the dynam-
ics are fast. Since the solution is very localized, the dynamical adaptation is particularly5

effective, allowing local resolutions up to 0.5 km on a global model. This inertia–gravity
regime is a good test of the accuracy of the penalized approximation of the reflecting
boundary conditions for height since reflection off coastlines and islands is an essen-
tial component of tsunami dynamics. Note that because of the sensitivity of the results
on the precise choice of initial condition, bathymetry and coastline geometry a pre-10

cise measure of the error is not possible although the results are qualitatively in good
agreement with the observations and other simulations.

We simulate the 2004 tsunami generated by the Sumatra–Andaman Earthquake.
The initial condition is based on the seismic data calculated by Fujii and Satake (2007)
from available tide gauge and satellite altimetry data. This initial condition is given in the15

form of complete seismic data on 22 separate square geographic regions, as shown in
Fig. 4 of Fujii and Satake (2007). These 22 separate sets of seismic data are used to
find the perturbed surface height using the Okada (1985) method with matlab software
written by Beauducel (2012). (Note that each of the 22 regions provides a separate sea
surface height perturbation.) The initial velocity is taken to be zero.20

The degree of mesh refinement is controlled by an overall non-dimensional tolerance
ε (not to be confused with the relaxation time ε of the penalization), from which thresh-
olds for height and velocity are deduced (Dubos and Kevlahan, 2013). The simulation
was run with an overall tolerance of ε = 0.05, and the thresholds for height and velocity

were εh = Hmaxε
3/2 and εu = Hmaxg/cε

3/2 where Hmax is the maximum height pertur-25

bation at any given time step. This allows the adaptation to accurately track the waves
even though after several hours their characteristic height Hmax is only 10 % of its initial
value. This modification is important for cases where the flow field is not statistically
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stationary in time. Note that we have deliberately chosen a relatively high tolerance
value to demonstrate that the code can provide qualitatively good results even for grid
compression ratios of O(103).

The coarsest level is J = 9 with 5 levels of refinement to give a maximum scale of
J = 14 corresponding to a minimum average resolution of about 〈∆xmin〉 = 475m. Note5

that a non-adaptive simulation at this resolution would require about 2.68×109 height
nodes (hexagonal cells), while the initial condition requires only about 3.09×106 height
nodes in the adaptive simulation corresponding to a grid compression ratio of 867.

The penalization parameters are α = 8×10−3 and η = 5×10−5 and the minimum
bathymetry depth is Hmin = 50 m. The adaptive wavelet code was run on 256 cores on10

the Scinet supercomputer.
The first arrival time of a 5 cm wave and the maximum wave height over all times

up to 16 h at all positions are shown in Fig. 6. The maximum wave height results
show the focusing effect of bathymetry features (particularly the Southwest Indian
Ridge) and agree qualitatively with both observations and simulations using the MOST15

model (Titov et al., 2005). Detailed quantitative verification is not possible due to sen-
sitive dependence of the results on details of the initial conditions, bathymetry and
coastline modelling (including run-up, not included in this model).

The ability of the code to track an evolving localized tsunami wave over long times
and through reflection and focusing events is illustrated in Figs. 7, 9 and 10. The ac-20

tual tolerances are scaled dynamically to take into account the decreasing maximum
wave height over time. Note that the finest J = 14 (500 m) resolution is only needed
very locally along some parts of the coastline and where the wavefront is very steep or
focusing. Figure 8 uses a zoomed view to show precisely where the finest resolution is
required in the interior of a focusing wave packet. As mentioned above, we have delib-25

erately chosen a relatively large tolerance since we are interested in the propagation
of the wavefront (and to illustrate the extreme adaptivity potential of the method). If we
were interested in accurate simulation of the entire wavefront (e.g. the residual wave
motion shown in Fig. 10 at 16 h) we could select a smaller tolerance.
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This simulation has demonstrated the potential of the dynamically adaptive wavelet
method with penalization for high resolution simulation of tsunami propagation. Local
resolutions of less than 500 m have been achieved on a global model with modest
consumptions of computational resources: the simulation until the arrival at the African
coast requires only two to three days on 256 cores of a computing cluster. Because5

of the localization of the wavefronts, tsunami propagation is particularly well-suited to
adaptive simulation. The plot of the grid compression ratio shown in Fig. 11 shows that
the code achieves very high grid compression ratios, ranging from 936 at 40 min to
400 at 16 h when the wave has entered the Atlantic ocean. When all potential degrees
of freedom are included (height and velocity nodes) the grid compression ratio varies10

from 1240 to 455. Since Aechtner et al. (2014) found that the adaptive wavelet code is
about three times slower per active height node than the non-adaptive TRiSK code we
expect the tsunami simulation to be between 130 and 300 times faster than the non-
adaptive code for a J = 14 resolution. Compared to a similar spectral code the adaptive
simulation should be about 248 to 91 times faster.15

5.3 Wind-driven ocean circulation

The second simulation is of global wind-driven ocean circulation over several years.
This tests the adaptive wavelet model with Brinkman penalization in the quasi-
geostrophic regime for slow dynamics. Our goal is to qualitatively predict the structure
of the main ocean gyre flows, within the limits of the rotating shallow water equation20

model. In this case large basin-scale circulation is driven by the applied wind stress
forcing via the Sverdrup relation. Intense boundary currents are expected to form along
western coastlines (e.g. the gulf stream). The shallow water equations are modified by
adding a wind-stress forcing term τ/(ρh) to the right hand side of the equation.

As for the tsunami case, the bathymetry and topographic data are from the 1 arc min25

NOAA ETOPO1 global relief data base (Amante and Eakins, 2009). The wind-stresses
τ(x,y) are stationary in time and derived from the mean December wind stresses from
the NCAR Hellerman and Rosenstein Global Wind Stress Data set (Hellerman and
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Rosenstein, 1980, 1983) shown in Fig. 12. This data set consists of monthly averaged
wind stress over the global ocean for the years 1870 through 1976 on a two degree
latitude–longitude grid. The wind stress data is evaluated on the adapted grid using
bilinear interpolation.

The numerical experiment is characterized by a few independent dimensional pa-5

rameters: τ/ρ with τ the mean wind stress and ρ the density of water, the planetary
rotation rate Ω ∼ f and radius R, the basin scale L ∼ R, the mean ocean depth H , grav-
ity g, the Reynolds number Re, the width of the boundary layer δM , and the Froude
number of the boundary layer F rBC. Once these are defined a few other scales emerge
following Sverdrup balance in the ocean interior and balance between viscous friction10

and meridional transport of planetary vorticity in the western boundary current. The
kinematic viscosity is therefore ν = UBCδM/Re, and β = ν/δ3

M . The gyre velocity USv
set by Sverdrup balance is

USv ∼
1

βHL
τ
ρ

. (34)

The gyre is characterized by its Rossby number Ro = USv/fL which should be small.15

The dimensional and non-dimensional parameters are fully summarized in Table 1.
Given the limitations of the shallow-water model, we have sacrificed the realism of
some of the dimensional parameters, while preserving the main scales of the gyres
and boundary currents. We retain realistic values of R, L, H , UBC and USv . On the
other hand we choose unrealistic values for gravity g and planetary rotation Ω, β. In-20

deed, a large gravity wave speed c imposes small explicit time steps which make the
simulation very costly without affecting the gyre and boundary current. Hence we sac-
rifice the realism of c and reduce it to a minimum, i.e. F rBC is set as large as possible
without producing shocks. This defines c = UBC/F rBC and g = c2/H . The Reynolds
number is set moderately large to permit barotropic instability and the generation of25

vortices.
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The wavelet simulation uses a tolerance of ε = 1.0, and the thresholds for height and

velocity are εh = USvRoR/gε
3/2 and εu = USvRoε

3/2. The coarsest level is J = 12 with
3 levels of refinement to give a maximum level of J = 12 and a minimum average reso-
lution of about ∆xmin = 1.9 km or 1/64◦. The penalization parameters are α = 10−2 and
η = 10−4. The minimum bathymetry depth is limited to Hmin = 50 m. The initial condi-5

tions are zero velocity and zero sea surface height perturbation. The adaptive wavelet
code was run on 256 cores on the Scinet supercomputer.

The mean ocean circulation consists of basin-scale gyres driven by the wind stress
via Sverdrup balance. The rigid-wall boundary condition induces narrow and intense
western boundary currents dominated by advection of planetary velocity and friction.10

This case is therefore a good test for the penalized velocity boundary conditions. We
stress again, however, that the mechanism generating meanders and vortices from the
gyre circulation and the boundary currents in the shallow water equations is different
from the baroclinic mechanism that is believed to be the dominant effect in the oceans
but cannot be captured in a one-layer shallow water model.15

Figure 13 shows the vorticity after 301 days. The grid has refined only at the bound-
ary currents and the grid compression ratio for height nodes is roughly constant at
about 210 once the boundary currents have developed (after about one week). Co-
herent vortex shedding, similar to von Karman vortex streets is clearly visible at some
high wind stress locations, such as the Drake passage and southern coast of Argentina20

shown in Fig. 13. The zoom of the unstable boundary layer region off southern Ar-
gentina shown in Fig. 14 illustrates the complex structure of the boundary current and
vortices. Note that the details of the boundary current are well-captured by the adap-
tive grid. Higher resolutions and Reynolds numbers would lead to more complex two-
dimensional turbulence like dynamics (with physics different from the actual flow due25

to the shallow water approximation). Despite the limitations of the experimental set-
up, these results give an indication of the potential performance of a multi-layer model
and the ability of the method to capture boundary currents and their complex vortical
structure.
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6 Conclusions

We have derived and analyzed mathematically a new volume penalization for no-slip
boundary conditions for the shallow water equations. This penalization is based on the
physical equations for shallow water flow in a porous medium with vanishing porosity
and permeability in that part of the domain corresponding to solid regions. Mathemati-5

cal analysis of the linearized one-dimensional shallow water equations shows that the
solution of the penalized equations converges to exact solution in the limit as poros-

ity α and permeability η tend to zero. The error at finite α and η is O(αη1/2). Unlike
previous penalizations of the shallow water equation, it conserves mass and energy
and the wave speed is the same in both fluid and solid regions. The convergence and10

error properties of the method have been verified numerically for the one-dimensional
linearized equations.

The primary motivation for developing this new penalization is to extend our re-
cent dynamically adaptive wavelet method on the sphere (Dubos and Kevlahan, 2013;
Aechtner et al., 2014) to model ocean flows with coastlines. Penalization techniques15

are ideal for dynamically adaptive methods because they implement the coastline ge-
ometry implicitly by modifying the equations of motion rather than by explicitly changing
the geometry of the computation. The resolution of the coastline is high only where re-
quired by the flow dynamics.

We have implemented the proposed penalization in the adaptive wavelet code and20

tested it on two typical global scale flows: long-distance tsunami propagation (i.e. the
inertia-gravity wave regime with fast dynamics) and wind-driven ocean circulation (i.e.
the quasi-geostrophic regime with slow dynamics). These simulations show the poten-
tial of the adaptive method combined with the penalization to drastically reduce the
number of computational elements. The adaptive tsunami simulation uses between25

455 and 1245 times fewer computational elements (i.e. height nodes) than an equiv-
alent non-adaptive simulation, while the wind-driven ocean circulation simulation uses
around 210 times fewer elements.
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Although the shallow water equations are considered quite accurate for tsunami cal-
culations (and are used in many operational models) they are clearly physically in-
sufficient for calculating ocean circulation. The next step in the development of the
adaptive wavelet model for ocean circulation is to add vertical layers and temperature
and density equations. The grid adaptation will only be done in the horizontal plane5

and so the three-dimensional model should actually have better parallel performance
than the model on the sphere since the computational load will be better balanced.
We expect to also use penalization to model bathymetry, as well as coastlines, in the
three-dimensional model, following Reckinger et al. (2012).

The penalization method presented here should aid in the development of fully dy-10

namically adaptive ocean global models for tsunami propagation and ocean circulation.

Code availability

The complete adaptive wavelet code used to generate the results in this paper is avail-
able at bitbucket.org/kevlahan/wavetrisk.
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Table 1. Physical parameters used for the reduced gravity simulation of wind-driven ocean
circulation.

Non-dimensional parameters of boundary layer determining simulation

Reynolds number Re 104

Froude number of boundary layer F rBC 0.3
Non-dimensional boundary layer width δ∗M 0.0125

Unconstrained parameters

Radius of Earth R 6.3710×106 m
Reference length scale (radius of North Atlantic) L 3.0000×106 m
Mean ocean depth H 3.5729×103 m
Velocity of boundary layer UBC 1.8000×100 ms−1

Rotation rate Ω 5.7664×10−7 s−1

Wind stress τ 7.1592×10−2 Nm−2

Density ρ 1.0270×103 kgm−3

Quantities determined by above choices

Boundary layer width δM = δ∗ML 3.7500×104 m
Kinematic viscosity ν = UBCδM/Re 6.7500×100 m2 s−1

Effective β parameter β = ν/δ3
M 1.2800×10−13 m−1 s−1

Sverdrup (gyre) velocity USv ∼ 1
βHL

τ
ρ 5.2875×10−2 ms

Wave speed c = UBC/F rBC 6.0000×100 ms−1

Gravitational acceleration g = c2/H 1.0076×10−2 ms−2

Coriolis parameter f ∼Ω 5.7664×10−7 s−1

Rossby radius of deformation Rd = c/f 1.0405×107 m
Rossby number Ro = USv/(Lf ) 3.0565×10−2
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 + b(x)

z

0

Sea surface

Seafloor

η(x,t)

b(x)
x

η(x,t)

h(x,t)

h(x,t) = 

Figure 1. Shallow water geometry. The perturbation of the sea surface from equilibrium sea
surface z = 0 is η(x) and the sea depth is given by the bathymetry b(x) ≥ 0, which is the depth
of the seafloor below the equilibrium sea surface. The total height of the fluid is then h(x) =
η(x)+b(x). In the shallow water approximation the wavelength of the perturbations of the sea
surface is much greater than the depth, and the amplitude of the perturbations is much less
than the depth.
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Figure 2. Height initial conditions for the wave packet and Gaussian test cases and porosity
φ(x) with α = 0.1. The velocity is initially zero. Note the smoothing of the indicator function over
about four grid points at the left and right solid boundaries with ∆ = ∆x.
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Figure 3. Solution at t = 0.26 just after the reflection when the wave is still interacting strongly
with the wall (circles) compared with the exact solution (line). Parameters α = 10−3 and K =
4×10−6. The resolution N = 300 is low to clearly illustrate the internal boundary layer and the
differences between the exact and penalized solution near the boundaries. Note the boundary
layer in the penalized solid region for the velocity and the fact the height drops slightly inside
the fluid due the smoothing of the porosity φ(x). The error in the velocity boundary condition is
0.03 ≈ ε1/2, as expected.
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Figure 4. Control of L∞ height penalization error by the porosity parameter α for the Gaussian
wave test case compared with predicted scaling α (straight line) when ε = 10−3 is fixed, and
scaling α1/2 when ε = K/α as in the porous medium equations. The permeability is fixed at
K = (4∆x)2 and the resolution is N = 2400. Note that at this resolution the error of the second-
order finite volume method saturates at 7.7×10−5. Note that velocity results have exactly the
same error as the height results.
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Figure 5. Left: control of L∞ height penalization error by the permeability parameter ε for the
Gaussian wave test case compared with predicted scaling ε1/2 (straight line). Right: conver-
gence of L∞ error with grid size ∆x for the Gaussian wave test case compared with predicted
first-order scaling (straight line). The porosity is fixed at α = 10−2. The resolution is N = 2400
for both results.
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Figure 6. First arrival time (of a wave with height at least 5 cm) and maximum wave height for
simulation of 2004 Indonesian tsunami.
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Figure 7. Tsunami after 70 min. The grid compression ratio is 930 and the finest J = 14 reso-
lution is required only near the coasts where the tsunami has hit and very locally in the propa-
gating wavefront. The black boxes indicate the zoomed regions shown in Fig. 8.
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100 km

Figure 8. Tsunami: approximately 650km×550 km zoom of grid (left) and height (right) for
results shsown in Fig. 7. Recall that in the left figure the black hexagons have size approximately
0.5 km.
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Figure 9. Tsunami: adaptive grid and wave height after 4 h. The grid compression ratio is 740.
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Figure 10. Tsunami: adaptive grid and wave height after 16 h. The grid compression ratio is
455.
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Figure 11. Grid compression ratio for tsunami simulation counting height nodes only and all
degrees of freedom (i.e. height and velocity nodes).
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Figure 12. December wind stress field from Hellerman and Rosenstein (1980, 1983) used to
force wind-driven ocean circulation shown in Fig. 13. Only every other wind stress data point is
shown. The rms wind stress is 7.1592×10−2 Nm−2.
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Figure 13. Relative vorticity field for wind-driven ocean circulation after 301 days. Note vortex
shedding from the boundary current off Argentina and in Drake’s Passage.
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Figure 14. Zoom of vortex shedding dynamics off the southern coast of Argentina shown in
Fig. 13: grid (left), relativity vorticity (right). The scales are as in Fig. 13. Note the complex
boundary layer structure and vortices captured by the adaptive grid.
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